SPSS+AMOS数据分析案例教程-关于中介模
SPSS视频教程内容目录和跳转链接
Meta分析辅导+代找数据
SPSS+AMOS数据分析案例教程-关于中介模
SPSS视频教程内容目录和跳转链接
R语言快速入门视频教程
Python智联招聘数据分析
LCA潜在类别分析和Mplus应用
Amos结构方程模型数据分析入门教程
倒U关系回归分析中介效应和调节效应分析SPSS视频教程
统计咨询(图文问答)

pandas文本数据转整数分类编码的最佳实践

在B站@mlln-cn, 我就能回答你的问题奥!

文章目录
  1. 1. 问题描述
  2. 2. 数据集
  3. 3. 方案Ⅰ:替换字符串
  4. 4. 方案Ⅱ:标签编码
  5. 5. 方案三: 转换成哑变量, 或者叫one-hot编码
  6. 6. 方案四: 自定义二分类
  7. 7. Scikit-Learn

问题描述

在许多实际的数据处理工作中,数据集通常包含分类变量。这些变量通常存储为表示各种特征的文本值。一些示例包括颜色(“红色”,“黄色”,“蓝色”),尺寸(“小”,“中”,“大”)或地理名称(州或国家)。无论使用何种值,挑战在于确定如何在分析中使用此数据。许多机器学习算法可以支持分类值而无需进一步操作,但还有许多算法不支持。因此,分析师面临的挑战是如何将这些文本属性转换为数值以便进一步处理。

与数据科学世界的许多其他方面一样,关于如何解决这个问题没有单一的答案。每种方法都需要权衡,并对分析结果产生潜在影响。幸运的是,pandas和scikit-learn的python工具提供了几种方法,可用于将分类数据转换为合适的数值。本文将对一些常见的(以及一些更复杂的)方法进行汇总,希望它能帮助其他人将这些技术应用于他们的现实世界问题。

数据集

在本文中,我在UCI机器学习库中找到一个好的数据集。这个特定的汽车数据集包括分类值和连续值的组合,并且作为相对容易理解的有用示例。由于在决定如何编码各种分类值时,领域知识是一个重要方面 - 这个数据集是一个很好的个案研究。

在我们开始编码各种值之前,我们需要载入数据并进行一些小的清理。幸运的是,pandas使这简单明了:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import pandas as pd
import numpy as np

# 定义数据的列名称, 因为这个数据集没有包含列名称
headers = ["symboling", "normalized_losses", "make", "fuel_type", "aspiration",
"num_doors", "body_style", "drive_wheels", "engine_location",
"wheel_base", "length", "width", "height", "curb_weight",
"engine_type", "num_cylinders", "engine_size", "fuel_system",
"bore", "stroke", "compression_ratio", "horsepower", "peak_rpm",
"city_mpg", "highway_mpg", "price"]

# 读取在线的数据集, 并将?转换为缺失NaN
df = pd.read_csv("http://mlr.cs.umass.edu/ml/machine-learning-databases/autos/imports-85.data",
header=None, names=headers, na_values="?" )
df.head()[df.columns[:10]]
输出(html):
symboling normalized_losses make fuel_type aspiration num_doors body_style drive_wheels engine_location wheel_base
0 3 NaN alfa-romero gas std two convertible rwd front 88.6
1 3 NaN alfa-romero gas std two convertible rwd front 88.6
2 1 NaN alfa-romero gas std two hatchback rwd front 94.5
3 2 164.0 audi gas std four sedan fwd front 99.8
4 2 164.0 audi gas std four sedan 4wd front 99.4

看一下所有列的数据类型:

1
df.dtypes
输出(plain):
symboling int64
normalized_losses float64
make object
fuel_type object
aspiration object
num_doors object
body_style object
drive_wheels object
engine_location object
wheel_base float64
length float64
width float64
height float64
curb_weight int64
engine_type object
num_cylinders object
engine_size int64
fuel_system object
bore float64
stroke float64
compression_ratio float64
horsepower float64
peak_rpm float64
city_mpg int64
highway_mpg int64
price float64
dtype: object

因为我们只关心文本数据, 所以我们选出类型为”object”的列, 而pandas提供了select_dtypes方法可以快速达到目的:

1
2
df2 = df.select_dtypes('object').copy()
df2.head()
输出(html):
make fuel_type aspiration num_doors body_style drive_wheels engine_location engine_type num_cylinders fuel_system
0 alfa-romero gas std two convertible rwd front dohc four mpfi
1 alfa-romero gas std two convertible rwd front dohc four mpfi
2 alfa-romero gas std two hatchback rwd front ohcv six mpfi
3 audi gas std four sedan fwd front ohc four mpfi
4 audi gas std four sedan 4wd front ohc five mpfi

因为数据集种包括缺失数据, 这会增加后续处理的难度, 我们为了简单起见, 将缺失值删除即可:

1
df2.dropna(inplace=True)

方案Ⅰ:替换字符串

最简单的方式就是, 查找列中所有的字符串, 然后给不同的字符串一个编号, 然后用编号替换字符串:

  • 使用vlaue_counts获取所有的字符串:
1
2
3
4
col = 'body_style'

strs = df2[col].value_counts()
strs
输出(plain):
sedan 94
hatchback 70
wagon 25
hardtop 8
convertible 6
Name: body_style, dtype: int64
  • 将所有字符串映射为数字:
1
2
value_map = dict((v, i) for i,v in enumerate(strs.index))
value_map
输出(plain):
{'sedan': 0, 'hatchback': 1, 'wagon': 2, 'hardtop': 3, 'convertible': 4}
  • 使用replace方法替换字符串
1
df2.replace({col:value_map})[col].head()
输出(plain):
0 4
1 4
2 1
3 0
4 0
Name: body_style, dtype: int64

你会看到, 不仅仅字符串被替换, 而且series的数据类型变成了int64

方案Ⅱ:标签编码

编码分类值的另一种方法是使用称为标签编码的技术。标签编码只是将列中的每个值转换为数字。例如,body_style列包含5个不同的值。我们可以选择像这样编码:

  • convertible -> 0

  • hardtop -> 1

  • hatchback -> 2

  • sedan -> 3

  • wagon -> 4

  • 首先你可以将列的数据格式转换为category

1
2
bs = df2['body_style'].astype('category')
bs.head()
输出(plain):
0 convertible
1 convertible
2 hatchback
3 sedan
4 sedan
Name: body_style, dtype: category
Categories (5, object): [convertible, hardtop, hatchback, sedan, wagon]
  • 然后你只需要使用标签的编码作为真正的数据就可以了:
1
bs.cat.codes.head()
输出(plain):
0 0
1 0
2 2
3 3
4 3
dtype: int8

方案三: 转换成哑变量, 或者叫one-hot编码

标签编码的优点是它很简单,但它的缺点是数值可能被算法“误解”。例如,0的值显然小于4的值,但这是否真的与现实生活中的数据集相对应?在我们的计算中,旅行车的重量是否比敞篷车重4倍?在这个例子中,我不这么认为。所以我们需要将数据转换为哑变量(onehot), 在pandas中, 这个转变只需要一行代码:

1
pd.get_dummies(df[['drive_wheels', 'body_style']]).head()
输出(html):
drive_wheels_4wd drive_wheels_fwd drive_wheels_rwd body_style_convertible body_style_hardtop body_style_hatchback body_style_sedan body_style_wagon
0 0 0 1 1 0 0 0 0
1 0 0 1 1 0 0 0 0
2 0 0 1 0 0 1 0 0
3 0 1 0 0 0 0 1 0
4 1 0 0 0 0 0 1 0

方案四: 自定义二分类

根据数据集,您可以使用标签编码和one-hot来创建满足进一步分析需求的二分类列

在此特定数据集中,有一个名为engine_type的列包含几个不同的值:

1
df2['engine_type'].value_counts()
输出(plain):
ohc 146
ohcf 15
ohcv 13
dohc 12
l 12
rotor 4
dohcv 1
Name: engine_type, dtype: int64

为了便于讨论,我们可能关心的是发动机是否是顶置凸轮(OHC)。换句话说,OHC的各种版本对于该分析都是相同的。如果是这种情况,那么我们可以使用str accessor创建一个新列,指示汽车是否有OHC引擎。

1
df2["engine_type"].str.contains("ohc").map(int).value_counts()
输出(plain):
1 187
0 16
Name: engine_type, dtype: int64

Scikit-Learn

除了pandas方法,scikit-learn还提供类似的功能。就个人而言,我发现使用pandas有点简单,但我认为重要的是要知道如何在scikit-learn中执行这些过程。

例如,如果我们想对汽车的品牌进行标签编码,我们需要实例化LabelEncoder对象并fit_transform数据:

1
2
3
4
5
from sklearn.preprocessing import LabelBinarizer

lb_style = LabelBinarizer()
lb_results = lb_style.fit_transform(df2["body_style"])
pd.DataFrame(lb_results, columns=lb_style.classes_).head()
输出(html):
convertible hardtop hatchback sedan wagon
0 1 0 0 0 0
1 1 0 0 0 0
2 0 0 1 0 0
3 0 0 0 1 0
4 0 0 0 1 0

注意
本文由jupyter notebook转换而来, 您可以在这里下载notebook
统计咨询请加QQ 2726725926, 微信 mllncn, SPSS统计咨询是收费的
微博上@mlln-cn可以向我免费题问
请记住我的网址: mlln.cn 或者 jupyter.cn

统计咨询

统计咨询请加入我的星球,有问必回

加入星球向我提问(必回),下载资料,数据,软件等

赞助

持续创造有价值的内容, 我需要你的帮助